Excess Volumes of N,N-Dimethylformamide with Ketones at 303.15 K

P. Venkatesu and M. V. Prabhakara Rao*

Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh, India

Abstract

Excess volumes, $V E$, of binary liquid mixtures of N, N-dimethylformamide with methyl propyl ketone, diethyl ketone, methyl isobutyl ketone, methyl isopropyl ketone, and cyclohexanone at 303.15 K have been measured with a dilatometer. Excess volumes are negative for the systems of N, N-dimethylformamide with methyl propyl ketone, diethyl ketone, methyl isobutyl ketone, and methyl isopropyl ketone and are positive for N, N-dimethylformamide with cyclohexanone at 303.15 K .

Introduction

This paper forms part of our program on the measurement of thermodynamic properties of nonelectrolyte solutions (Venkatesu and Rao, 1994; Goud et al., 1995). We report in this paper excess volumes, V^{E}, for N, N-dimethylformamide with methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl isobutyl ketone, methyl isopropyl ketone, and cydohexanone at 303.15 K . The aim of this work is to provide information on the molecular interactions between ketones and N, N-dimethylformamide from measurements of excess volumes.

Experimental Procedure

Apparatus. Excess volumes were measured directly using the dilatometer technique described earlier (Rao and Naidu, 1974; Ramadevi and Rao, 1995). The excess volumes are accurate to $\pm 0.003 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. A thermostatically controlled, well-stirred water bath with temperature controlled to $\pm 0.01 \mathrm{~K}$ was used for all the measurements.
Materials. All the chemicals used were of analytical grade. N, N-Dimethylformamide was purified by the method described previously (Venkatesu et al., 1994). All the ketones were further purified by the methods described by Venkateswarlu and Raman (1985). The purities of the samples were checked by comparing the measured densities of the compounds with those reported in the literature (Dharmaraju et al., 1982; Rao and Reddy, 1985; Rintelene et al., 1937). Densities of pure components were determined with a bicapillary type pycnometer, which offers an accuracy of 2 parts in 10^{5}. The measured densities and those reported in the literature are listed in Table 1.

Table 1. Densities (ρ) of Pure Components at $\mathbf{3 0 3 . 1 5} \mathrm{K}$

component	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	
	lit.	
N,N-dimethylformamide	0.94118	$0.94120(1985)$
methyl propyl ketone	0.79653	$0.79660(1982)$
diethyl ketone	0.80458	$0.80461(1982)$
methyl isobutyl ketone	$0.79607^{\text {a }}$	$0.79610^{\text {a }}(1982)$
methyl isopropyl ketone	0.80518	$0.80520(1937)$
cyclohexanone	0.93758	$0.93757(1982)$

${ }^{\text {a }}$ At 298.15 K .

Results and Discussion

The experimental excess volumes for binary mixtures of N, N-dimethylformamide with methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl isobutyl ketone,

[^0]Table 2. Excess Volumes (VE) for the Binary Mixtures of N, N-Dimethylformamide (1) with Ketones (2) at 303.15 K

x_{1}	$\mathrm{~V}^{\mathrm{E}} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$	x_{1}	$\mathrm{~V}^{\mathrm{E}} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$
$\mathrm{~N}, \mathrm{~N}$-Dimethylformamide (1)	Methyl	Propyl	Ketone (3)
0.1242	-0.079	0.5523	-0.181
0.2195	-0.119	0.6252	-0.169
0.3312	-0.156	0.7134	-0.147
0.4025	-0.172	0.8325	-0.098
0.5174	-0.179	0.9147	-0.051

N,N-Dimethylformamide (1) + Diethyl Ketone (2)

0.1440	-0.100	0.6540	-0.197
0.1957	-0.133	0.7694	-0.167
0.3324	-0.183	0.8618	-0.115
0.4195	-0.201	0.9227	-0.074

$0.5508 \quad-0.213 \quad-0.074$

N,N-Dimethylformamide (1) + Methyl I sobutyl Ketone (2)

0.1556	-0.144	0.6662	-0.253
0.2665	-0.215	0.7615	-0.218
0.3061	-0.231	0.8897	-0.130
0.4299	-0.268	0.9328	-0.086
0.5339	-0.272		

N ,N-Dimethylformamide (1) + Methyl I sopropyl Ketone (2)			
0.1303	-0.133	0.6007	-0.293
0.2193	-0.201	0.7125	-0.254
0.3178	-0.263	0.7649	-0.226
0.4002	-0.295	0.8526	-0.159
0.5175	-0.309	0.9314	-0.082

N,N-Dimethylformamide (1) + Cyclohexanone (2)

0.1342	0.064	0.5849	0.126
0.2048	0.085	0.6425	0.119
0.3268	0.115	0.7580	0.092
0.4213	0.128	0.8249	0.072
0.5214	0.132	0.9098	0.044

Table 3. Binary Parameters of Eq 1 and Standard Deviation $\sigma\left(\mathrm{V}^{\mathrm{E}}\right)$ at 303.15 K

	$\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$			
$\mathrm{~N}, \mathrm{~N}$-dimethylformamide (1) +	a_{0}	a_{1}	a_{2}	$\sigma\left(\mathrm{~V}^{\mathrm{E}}\right)$
methyl propyl ketone (2)	-0.7220	0.0141	0.0528	0.003
diethyl ketone (2)	-0.8361	-0.0733	-0.1839	0.003
methyl isobutyl ketone (2)	-1.0895	-0.1180	-0.2281	0.003
methyl isopropyl ketone (2)	-1.2270	-0.0612	-0.0078	0.003
cyclohexanone (2)	0.5290	-0.0136	-0.0232	0.002

methyl isopropyl ketone, and cyclohexanone at 303.15 K are reported in Table 2 and graphically represented in Figure 1. The V^{E} values are fitted by the method of least squares using the polynomial

$$
\begin{equation*}
V^{E}=x_{1} x_{2}\left[a_{0}+a_{1}\left(x_{1}-x_{2}\right)+a_{2}\left(x_{1}-x_{2}\right)^{2}\right] \tag{1}
\end{equation*}
$$

where x_{1} and x_{2} are the mole fractions of components 1 and 2 , respectively. a_{1}, a_{2}, and a_{3} are the adjustable parameters

Figure 1.
obtained by the least squares method and are listed in Table 3 along with the standard deviation $\sigma\left(\mathrm{V}^{\mathrm{E}}\right)$.

The excess volumes are negative for the systems of N, N dimethylformamide with methyl propyl ketone, diethyl ketone, methyl isobutyl ketone, and methyl isopropyl ketone at 303.15 K . The negative VE data indicate dipoledipole interactions between the unlike components which leads to contraction in volume. The observed VE data for N, N-dimethylformamide with cydohexanone are positive at 303.15 K . The positive V^{E} data contribute to an expansion in volume.

The values of V^{E} for equimolar mixtures are found to vary in the following order: cyclohexanone > methyl propyl
ketone > diethyl ketone > methyl isobutyl ketone > methyl isopropyl ketone.

Literature Cited

Dharmaraju, G.; Narayanasway, G.; Raman, G. K. Excess Volumes and Isentropic Compressibilities of Binary Mixtures of Ketone and acetonitrile. J. Chem. Eng. Data 1982, 27, 193.
Goud, B. B.; Venkatesu, P.; Rao, M. V. P. Excess Volumes of 1,1,2,2Tetrachloroethane or Tetrachloroethene +2 -Chlorotoluene +3 -Chlorotoluene, and + 4-Chlorotoluene at 303.15 and 313.15 K . J . Chem. Eng. Data 1995, 40, 1211-1213.
Ramadevi, R. S.; Rao, M. V. P. Excess Volumes of Substituted Benzenes with N,N-Dimethylformamide. J. Chem. Eng. Data 1995, 40, 6567.

Rao, M. V. P.; Naidu, P. R. Excess Volumes of Binary Mixtures of Alcohols in Methylcyclohexane. Can. J . Chem. 1974, 52, 788-790.
Rao, K. P. C.; Reddy, K. S. Excess Volumes and Excess Isentropic Compressibilities of Binary Mixtures of N, N-dimethylformamide with Branched Alcohols at 303.15 K. Thermochim. Acta 1985, 91, 321-327.
Rintelene, J. C.; Saylor, J. H.; Gross, P. M. The Densities and Vapor Pressures of Some Alkylbenzene, Aliphatic Ketones and n-Amylchloride. J. Am. Chem. Soc. 1937, 59, 1129.
Venkatesu, P.; Rao, M. V. P. Excess Volumes of Binary mixtures of Triethylamine with Aromatic Hydrocarbons at 308.15 K . Fluid Phase Equilib. 1994, 93, 369-376.
Venkatesu, P.; Venkatesulu, D.; Rao, M. V. P. Excess Volumes of Ternary Mixtures of N,N-Dimethylformamide + Methyl Ethyl Ketone +1 -Alkanols at 303.15 K . J . Chem. Eng. Data 1994, 39, 140-142.
Venkateswarlu, P.; Raman, G. K. Sound Velocities and Isentropic compressibilities of 1,2-Dibromoethane + Ketones at 303.15 K . J. Pure Appl. Ultrason. 1985, 7, 31-34.

Received for review March 6, 1996. Accepted J une 2, 1996. ${ }^{*}$ P.V. is highly thankful to the Council of Scientific \& Industrial Research (CSIR), New Delhi, for the award of a Research Associateship.

J E9600919

${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, J uly 15, 1996.

[^0]: * To whom correspondence should be addressed.

